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Numerical Applications of Reflection 
to Partial Differential Equations 

By Arthur David Snider* 

Abstract. Recent papers have reported results on the numerical solution of 
nonlinear free boundary problems wherein a conformal transformation (which 
must be determined) maps the unknown flow region onto a known domain; the 
boundary conditions are handled by the method of steepest descent. The present 
paper discusses the use of the reflection property of solutions of elliptic equations 
to determine these boundary conditions. The procedure is applied to the vena 
contracta models, and it is seen that it converges about ten times faster than the 
steepest-descent method. 

This paper will report the results of a study of the application of the procedure of 
analytic continuation to the numerical solution of partial differential equations, and in 
particular, to the vena contracta problem. 

The possibility of extending the solution of an analytic boundary value problem 
across the boundary has been explored in [11, [21, and [3]. The results show that in 
many cases (including nonlinear problems), there is a formula expressing the solution 
at points beyond the boundary in terms of the values in the original domain; such an 
expression is commonly called a reflection rule. Here we shall examine in detail the 
theory behind the reflection scheme for the problem of finding a conformal transforma- 
tion with certain boundary restrictions. 

This concept has an immediate application in the numerical solution of free 
boundary problems, such as the vena contracta [4], [5]. The conformal map is used to 
transform the complicated, unknown domain of the solution to a simpler, known do- 
main, wherein the (transformed) differential equation can be more easily solved; of 
course, one must solve for the transformation simultaneously. The result is then re- 
garded as a parametrized form of the solution. The principal difficulty in this proce- 
dure is the handling of the boundary conditions for the conformal map. In [41 Bloch 
derived boundary equations from a steepest-descent argument, supplemented by equa- 
tions serving to establish the free boundary constraint (which in the case of the vena 
contracta expresses continuity of the pressure across a fluid-air interface). Our paper 
purports to demonstrate that the reflection technique is superior to the method of 
steepest descent in handling these problems. 

Part 1 of this paper describes the theory behind this reflection scheme. Proofs of 
certain results are given when available, and numerical evidence of other consequences 
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is offered so that a heuristic understanding of the scheme's implications and limitations 
is obtained. 

The application of the procedure in solving the vena contracta comprises Part 2. 
Some theoretical aspects peculiar to free-surface problems are studied; furthermore, this 
model is full of complications not related to reflection and each of these must be dealt 
with. In particular, we present some special techniques for handling the point of sepa- 
ration of the free surface from the wall. 

Part 3 describes the results of programming this procedure on New York lniver- 
sity's CDC 6600 computer. The accuracy and efficiency are reported, and it is shown 
that the reflection method converges about ten times faster than the steepest-descent 
procedure mentioned above. New calculations of the two- and three-dimensional con- 
traction coefficients are quoted; they agree extremely well with those of Bloch [4]. 

The evidence offered herein clearly demonstrates the superiority of this scheme in 
handling the vena contracta model, and we are led to conclude that reflection is the 
appropriate method for solving a wider class of free boundary problems which arise in 
fluid dynamics and plasma physics. Furthermore, the results tend to encourage the use 
of reflection rules whenever they are applicable in solving more general nonlinear bound- 
ary value problems in two independent variables. 

Part 1. Reflection. In [1] Lewy shows that the solutions to many two-dimensional 
analytic elliptic differential equations, subject to analytic boundary conditions, can be 
continued across the boundary in a prescribed manner. We shall demonstrate how this 
concept may be used to develop a finite-difference method for finding conformal maps. 

A. Calculation of Conformal Maps. Let z(w) = x(u, v) + iy(u, v) be an analytic 
function mapping, say, a rectangle in the w-plane onto a domain D in the z-plane. The 
equations below follow from the Cauchy-Riemann conditions: 

(1) Ax = 0, 

(2) Ay =0, 

(3) xu xV +YuYv ?=0, 

(4) 1/2(X2 +y2 -x -Y ) =0. 

Direct computation will verify the following observations. If two functions x and 
y satisfy (1) and (2), then the left-hand side of (3) will be a harmonic function, whose 
harmonic conjugate is the left-hand side of (4) (hence, the factor 1/2). Thus, if (3) is 
satisfied on the boundary of the rectangle, it will hold true everywhere; and conse- 
quently, the function in (4) will be constant. Furthermore, the equations (1) through 
(4) imply that z(w) is conformal (analytic or anti-analytic; the latter possibility is easily 
eliminated in numerical schemes by initialization, and we consequently ignore it). 

This suggests a procedure which will yield conformal transformations: find har- 
monic functions x and y of the variables u and v such that (3) holds on the boundary 
of the region and (4) holds at one, arbitrary, point (see also [4] ). The scheme pre- 
sented herein is based on this strategy. 

B. Application of the Reflection Rules. To implement the above numerically, we 
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set up a mesh of uniform size h on, say, a rectangle in the w-plane, which is to be 
mapped onto a region in the z-plane bounded by analytic curves. Then we can write 
the finite-difference analogue of Laplace's equation at the interior mesh points for the 
functions x(u, v) and y(u, v): 

(5) xij= /4(Xi+ l,+ Xi l?i+Xij+1 XQ- 1) 

(to order 0(h2)). Now we must write equations for x and y on the boundary. 
According to the theory (cf. [1], [3], [6]), these harmonic functions can be 

analytically continued across the boundary for some distance. Our technique, then, is 
to define x and y at new mesh points just outside the rectangle and use these to write 

Eq. (5) along the boundary, as well as in the interior (see Fig. 1). Now the prob- 
lem becomes one of finding reflection rules, based on the boundary conditions, which 
will determine the values of x and y at the exterior mesh points. 
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FIGURE 1 

The boundary conditions demand that the sides of the rectangle map onto the 
analytic curves bounding the image region in the z-plane. For definiteness, let us say 
that the pre-image of the analytic curve r is the bottom of the rectangle, v = 0 (again 
see Fig. 1). 
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The equation for F has the form 

(6) g(x, y) = 0, 

where g admits a power series expansion. Making the substitution 

(7 ) x= (z + z ) /2, y =(z - _) /2 i, 

we get the equation for F in the form 

(8) F(z, z) = 0 

with F(zl, Z2) complex-analytic in z1 and z2. The reflection rule now is given by the 
following theorem. 

THEOREM. Let z(w) be an analytic function defined on both sides of the line 
v = 0, mapping this line onto the analytic curve given by (8). -If w_ is an interior 
point of the rectangle and w+ is its mirror image reflected through the line v = 0, and 
if z_ = z(w_) and z+ = z(w+), then 

(9) F(z+, z) = 0. 

Equation (9) tells how to compute x and y at the exterior mesh points. Notice 
its validity when r is one of the axes, or a circle. 

Proof of (9). Observe that the function f(w) = F(z(w), z(wi)) is analytic. It 
vanishes on the line v = 0, hence is identically zero. Setting w = , Eq. (9) results. 

Clearly, the same Eq. (9) holds for reflection through the other sides of the rec- 
tangle, so it provides the general rule for analytic continuation, and we now have a 
feasible scheme for computing conformal maps: we write (5) for x and y at the in- 
terior and boundary mesh points, and we write (9) at the exterior points. The next 
section discusses the consequences of using this procedure. 

C. Implications of the Reflection Rules. For the moment let us assume that the 
solution to this system of equations exists and is unique for every sufficiently small 
mesh size h, and that the solution converges to a function z(u, v) = x + iy, where x 
and y are harmonic, as h goes to zero. These assumptions will be discussed in the next 
section. What are the properties of z on the boundary? 

Let us examine a particular point wo on the boundary of the rectangle, together 
with its inner neighbor w_ and its reflected neighbor w+ (see Fig. 1). As h goes to 
zero, the three points-z+ = z(w+), zo = z(wo), z_ = z(w_), must all converge to the 
same point z1. But F(z+, z=) = 0, so F(zl, z-l) = 0 and z1 lies on r. (Another way 
of seeing this is to notice that z+ and z_ always lie on opposite sides of r, so z1 
must lie on F.) We conclude that the limiting function z maps the boundary of the 
rectangle onto the boundary of the region in the z-plane. 

Now it is our goal to prove that the normal and tangential derivatives on the 
sides of the rectangle of z are perpendicular, i.e., xnxt + Yn yt = 0. To this end we 
must study the geometry of the curve r. 

First, we assume that the function F(zl, Z2) was derived from a real function 
g(x, y) as described earlier, so that F(z, z) is always real. If z is given as a function of 
a real variable s, z = z(s), then dF/ds must be real. Since 
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(10) dF/ds=Flzs+ F2 Z 

we conclude 

(I 1) F2(G, f) =F ? 

Now, if z(t) is a parametrization of the curve r, F(z(t), z(t)) = 0. Thus, 

dF/dt = 0 = Fzt + F2z? = F2zt + F? z = 2Re(F2z-), 

(12) 
0 = (Re F2)xt + (Im F2)yt. 

If we associate, with each complex number, a vector whose x and y components 
are the real and imaginary parts, respectively,(12) says thatF2(G, ) is normal to the 
curve F(t, 0) = 0 (since the tangent is (xt, yt)). 

We can get more information about r by applying the analytic form of the im- 
plicit function theorem. If F(z1, Z2) is analytic in both variables with F(a, b) = 0 and 

F, (a, b) # 0, then F(z1, Z2) = 0 defines z1 as an analytic function of Z2 in a neighbor- 
hood of (a, b); 

(13) (Z1 -a)= c0 + cJ(z2 - b) + c2(z2 - b)2 +?- 

Furthermore, c = O and c =-(F2/F1) (a, b). 
We have (9) defining z+ in terms of z_ Let us suppose that z+ and z_ both 

approach t as h O 0; we just proved t was on the curve r; so F(t, .) = 0. 

Equation (13) then becomes 

(14) (Z+ -S) = - -( - ) + C2(Z_ - + 
F1( G, ~) 

Using (11) and adding t - z_ to both sides, we ultimately have 

F2 2 _ 
(15) Z+-Z = - I F2 2 [F2(z - ) +F2(z - )] ? O(Iz - 2). 

As the mesh size h of the rectangle becomes smaller, the quantities (t - z_)/h 
and (z+ - z_)/2h should give approximations to the derivative of z in the direction 
normal to the side of the rectangle, denoted zn. Thus, if we divide the above equations 
by 2h and take the limit, we get 

(16) Zn = (F2/21F2 2) [F2 ?F2Zn ] 

Since the coefficient of F2 is real, the direction of the vector zn, if it is nonzero, is the 
same as that of F2, i.e. normal to the curve r. 

Of course, the derivative zt of z along the side of the rectangle will be parallel to 
the tangent to r; so we will have 

(17) xnxt +Ynyt = Xuxv +Yuyv = 0 

for the function z(u, v) along the boundary of the rectangle. Reasoning as before for 
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these harmonic functions x and y, we conclude that (17) holds throughout the rec- 
tangle and that x2 + y2 - X2 - y2 = H is constant there. 

From what we have said so far, we cannot conclude that z is analytic, i.e., that 
H = 0. For example, the mapping x = 2u, y = v satisfies all the above requirements 
and is not analytic. To get an analytic map we must impose some additional condition 
to drive H to zero; presumably the particular application will suggest such a condition 
(see below). 

D. Existence, Uniqueness, and Convergence. We discuss the existence and unique- 
ness of the solution, and its convergence as h > 0, on the basis of numerical experiments. 

The method has been programmed for several different cases of image regions 
bounded by four analytic curves. The vena contracta described below leads to just such 
a region. The reflection rules were applied so as to map each side of the rectangle onto 
one of the bounding curves. This amounts to a four-point normalization because each 
corner must be carried into the intersections of these curves. The equations were iter- 
ated using overrelaxation to accelerate convergence and in each case the iterates did 
converge. This indicates (but does not prove) that the solution of the four-point nor- 
malization problem exists and is unique (if there were two solutions, one would expect 
the iterates to oscillate between them). By shifting one of the curves we can get differ- 
ent values for H; only one position makes H = 0, and at that point the finite-difference 

analogues of the Cauchy-Riemann equations are satisfied. 
No rigorous proof of convergence of the method as h > 0 has been developed, 

but the problem has similarities to the Dirichlet and Neumann problems, whose finite- 
difference analogues have been analyzed [3], [7], [8] . In the latter cases, the solutions 
of the difference equations approach those of the differential equation with an error of 
the order 0(h2), so we expect the same of our scheme also. Numerical experiments 
confirm that the convergence is 0(h2) (see below). 

It can be shown that a three-point-normalized scheme actually forces H to be 
zero; see [9] for details. 

E. Summary. The results of the preceding section can be stated concisely as 
follows. 

Consider analytic boundary curves described by equations of the form (8). We 
write Eq. (5) for x and y in a region in the w-plane; the equations are written for each 
interior and boundary mesh point. Then we write (9) for the reflected points. This 
procedure constitutes the reflection scheme for conformal mapping problems. 

When the w-region is a rectangle and the image is bounded by four analytic curves, 
each corresponding to a side of the rectangle, our numerical experiments lead us to 
conjecture the following theorem. 

THEOREM. The solutions xh and Yh of the equations of the reflection scheme 
converge to harmonic functions x(u, v) and y(u, v) as the mesh size h is diminished. 
The rate of convergence is 0(h2). 

Furthermore, whenever the solutions and their difference quotients converge, we 
have proved the following 

THEOREM. Under the convergence assumptions stated, the function z(w) maps 
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the sides of the rectangle onto the boundary curves, and on these sides the derivatives 
of z in the normal and tangential directions are perpendicular to each other. 

Equation (3) then holds throughout the region, and the quantity H is constant. Ex- 
perimentation shows that the value of H depends on the locations of the curves in the 
z-plane; H = 0 can be achieved by shifting them. This condition will then ensure that 
z(w) is analytic. 

The above procedure seems to be most suitable for applications of the method of 
reflection when the curves in the z-plane are analytic and known. However, as we pro- 
ceed in Part 2 it will become clear that neither of these conditions is essential, and one 
can often adapt the technique to less restrictive cases. 

Part 2. The Vena Contracta. We now describe the application of the reflection 
technique in solving the two- and three-dimensional vena contracta problems. 

A. The Physical Problem and Parameters. The vena contracta model is depicted 
in Fig. 2. An incompressible, inviscid fluid under pressure is allowed to escape as a jet 
stream through an aperture in the infinite containing wall. The width of the aperture 
is 2 YO; the asymptotic width of the stream is 2 Y.,,. For the two-dimensional case the 
aperture is a slit; in three dimensions, it is a circular hole (so the problem is axially 
symmetric). Symmetry allows us to restrict ourselves to the upper half (x, y)-plane. 

WALL 

FLUID 

Yo < ~FREE SURFACEO(z) 

YO~~~~~~~T 

JET STREAM 

-Yo 

WALL 

FIGURE 2 

For details of the physics of the flow, we refer the reader to [41, [51, [91, or 

[101. Here, in the interest of brevity, we merely summarize the mathematical descrip- 
tion. Following [10], we treat the two- and three-dimensional cases simultaneously by 

introducing the parameter m: 
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{ 0 in two dimensions, 
(18) m = 

1 in three dimensions. 

The motion is described by the stream function 4(x, y), which gives the x and y 
components of velocity by 

(19) VX = (4/3y)/ym, vy = - (4/3x)/ym. 

The equation for 4 is 

(20) /A4 - (m/y)(a4'/3y) = 0. 

A consistent set of boundary data is 

(21) 4 = 0 on the x-axis. 

(22) 4 = 1/(1 + m) on the wall and the free surface S. 

(23) (34,/3n)/ym = 1 on 1, 

where we have scaled so that YOO = 1 (cf. [9] for details); Eq. (23) is the free surface 
condition on the normal derivative. In addition, we observe 

(24) Y1+yM+m/(1 +m) asx-*c. 

With this normalization, the diameter Y0 cannot be specified arbitrarily; in fact, 
one of our goals will be to calculate the contraction coefficient 

(25) Cc(m) = ( Y.O/ Yorm + 1 . 

B. The Conformial Map. To facilitate the solution of this problem we map an 
infinite rectangle in the w-plane conformally onto the (upper-half) flow region. Corre- 
sponding points for this mapping are indicated in Fig. 3; the image of B is B', etc. A 
few comments are in order here. 

Practically speaking, we must truncate the rectangle at a finite length Umax, in- 

dicated by the line CD (and C'D', its image). BC maps onto the free surface 1; of 

course, the location of I is unknown, and this will result in a complicated set of bound- 

ary conditions on BC. The corner at A goes to the point at infinity in the second 

quadrant, so near A the map has the form 

(26) z(w) R/w 

with a negative residue R which must be calculated. 
Since the map z(w) is analytic, we can transform Eqs. (20)-(23) for 4 in the 

w-plane. Equation (20) becomes 

(27) A - m(Vy * V/Y = 0. 

(21) holds on AD, (22) on AB and BC, and the free boundary condition (23) becomes 

(28) (3,13v)2/IaZ3I3v2y2m = 1 

on BC 
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Now we have to find the solution i(u, v) and the conformal map z(w) simultane- 

ously. To to this numerically, we impose a uniformly-spaced mesh (of spacing h) on 

the rectangle, including the set of reflection points on the sides AB, BC, and AD 

(Fig. 3). We now turn to the problem of writing equations for t(u, v) and z(w) at 

these points. 
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FIGURE 3 

C. The Interior Points. Since x and y are harmonic functions, we write Eq. (5) 

for each of these at every interior mesh point. The same equation is written for 4 in 

two dimensions. For the axially symmetric case, we approximate equation (27) by 

(29) ~ jj =ai- 1l ,j_ 1i-lj + ai,j- 1 Qij-j 1 + a,+ 1 ,j ?f+ 1,j + ai,j+ 1 Qj,j+ 
(29) 4aja 

?i_ ? ?a,_ a+, ai 
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where 

ak= 1 I(Yk,l ?YQ) 

which is correct to order 0(h2) (cf. [4]). (However, see the next section for some 
modification near the corner A.) 

D. The Wall and the x-Axis. The values of 4 are specified on the wall and the 
x-axis (or AB and AD) by Eqs. (21) and (22). 

Equation (5) can be written for x and y at each mesh point on AB and AD if we 
use reflection rules to compute values at the exterior points; these are easily found by 
the method of Part I and we have 

(30) y+ y and x+ -x_ on AB, 

and 

(31) x+=x_ and y+ =-yonAD. 

However, we must incorporate some modifications to account for the singular 
natures of 4 and z at the corner w = 4;' has a jump discontinuity at A, while z has a 
pole (26). We proceed exactly as in [4] for 4 by subtracting off a known solution 

l, which incorporates the discontinuity, in a neighborhood of the origin: 

(32) 4 2 2 arc cos ('u2 ?vl/2) 

in two dimensions, and 

(33) { =u ) 

in three dimensions. Furthermore, in the axially symmetric case the truncation error 
in Eq. (29) becomes unbounded, so we also perform a Kelvin transformation 

(34) z' = l/z, 4I= /zI, 

in the same neighborhood of A. See [4] for details. 
The singularity in z(w) is handled by subtracting off the pole and writing Eq. (5) 

for the (regular) function 

(35) (w) = z(w) - Rlw. 

Again, this transformation is performed in a neighborhood of A. The reflection rules 
for ? are derived from Eqs. (30) and (31); in fact, they are identical with the rules for 
z. The residue R must be computed; we defer discussion of this point until section H. 

The interfacing of this special region near A with the rest of the rectangle is a 
simple programming matter and we again refer to [4] for the details. 

E. The Reflection Law at the Free Surface. BC is to be mapped onto the free 
boundary 1, but the reflection-rule situation is more complicated than that treated in 
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Part 1. The location of z is unknown and hence we have no simple equation like (8) 
to work with. However, we can derive a reflection rule from the integral equation for 
4 in two dimensions, and we will modify it to make it suitable in three dimensions. 
The implications of this new procedure will then have to be reviewed. 

First,we rewrite Eq. (8) in the form 

(36) y = g(z). 

Garabedian [10o has derived an integral equation relating 4 and g. In two dimensions, 
it takes the form 

(37) 4'(x, y) = Im z g'(t)?/2dt. 

Of course, 4 is harmonic in two dimensions and thus can be combined with its harmon- 
ic conjugate ?(x, y) to give an analytic function t(z). Equation (37) displays this 
property, and we see that 

(38) (z) = ?+ i4 =fZ g'(t)?2dt. 

By differentiating, we can solve for g(z) to get 

) Z2 

Now, if zo lies on 1, we can write (36) for it; and if z+ is the reflected image of z_ as 
in Fig. 3, we can write the reflection rule derived from (36), namely 

(40) Z+ =g(z_). 

Combining these, we eliminate the fiducial point z2 to obtain 

(41) + - o= Z( (t))2 dt. 

Expanding the integrand in the w-plane and using the Cauchy-Riemann equations judi- 
ciously, we ultimately derive 

- h2 42 + ih34'Q'u 

(42) Y_+ 
= 

o + z 

correct to order 0(h3). (See [9] for details.) We propose to use the approximate equa- 
tion (42) as our reflection rule along BC. 

Since this formula involves the intermediate point zo as well as z+ and z_, and 
since it is only an approximation, the analysis of Part 1 does not apply and we must 
reconsider the implications of Eq. (42) as the mesh size h goes to zero. 

If we subtract -z, multiply by (z - zo), divide by h2, and take the real part in 

(42), we get 

(43) Re h h 2 

Assuming convergence as h 0, we can identify the derivative z0 in (43) and we have 
shown that the free boundary condition (28) is a consequence of (42) (remember m = 0). 
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There is another condition imposed by this rule, corresponding to the imaginary 
part of this equation. With a little algebraic manipulation we can derive 

(44) im ~Z 
+ - 2Zo + Z- Z - 

- 
Z? ~ v 

(44) Im h2-h = v4u h 2 ~h 

which in the limit becomes 

(45) - Im zvvzv = QV Quv 

This is just the u-derivative of Eq. (28), which holds all along BC; the substitution 

zu =-izv follows from the Cauchy-Riemann equations. Incidentally, notice that if we 

had not kept the h 3$V/4v term in (42), we would be imposing the condition 

Im zv.vz = 0 along 1, which would be wrong. This is the reason for carrying the expan- 

sion of Eq. (41) so far. 

Although we have shown that the consequences of Eq. (42) are consistent with 
our solution, they do not appear to be as strong as the ones generated by application 
of the exact reflection laws; namely, z maps boundary to boundary, and Eq. (3). In 

fact, numerical experiments on a simple plasma-containment problem indicated that the 

application of the inexact rules does not determine a unique solution to the difference 

equations, as does the exact formulation with four-point normalization. Also, some of 

the solutions calculated with the inexact rule allowed the derivatives zu and zv to be- 

come nonorthogonal, violating (3). 
Further experimentation led to the suspicion that the latter fault was the crucial 

defect of the procedure. The difficulty is resolved bymodifying the reflection rule in such 
a way as to enforce the orthogonality of these derivatives. One can accomplish this by a 

adding an appropriate function of the derivatives. The new term should have the following 

properties: 
(a) It should cause z+ to be shifted in a direction so as to make zu and zv more 

nearly perpendicular, and the amount of the shift should be greater when the nonorthog- 

onality, as measured by xuxv + yu yv, is greater. 
(b) It should be zero when xU xV + yu Yv is zero, so that under this condition the 

term has no effect and the two consequences of the reflection rule will hold. 

(c) It must not cause instability, or else the iterates will still diverge. 
The first two considerations immediately suggest that the term be proportional to 

xuxv +yuyv, which, of course, depends on the cosine of the angle between zu and zv. 
A study of the different geometrical possibilities involved ultimately shows that 

z+, as defined by (42), should be shifted an additional amount proportional to, and in the 

direction of, i(xU xV + yu yV)/(z - - z0) (cf. [9] ). We must incorporate this orthogonality- 

correcting term into (42), acknowledging the following consideration: the shift in z+ 
should be of higher order than z+ - zo in (42). Otherwise, it may become the dominant 

term and obscure the free boundary constraint (28); furthermore, since tangential deriva- 

tives are involved, this term may tend to produce instability. Thus, we are led to the con- 

viction that the correction, as formulated, should be multiplied by h3; the modified re- 

flection rule now becomes 
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__h_2 __2 ___ih ____ i(xu x ~ ?~~ 
(46) 4 h + Xh3 v + Yuyv) 

z+ z0 ~ z 

where X is a constant to be chosen experimentally. 
The value of X which gives good results for all the problems considered and all mesh 

sizes seems to be about 50. However, experimentation has revealed that this type of re- 

flection law, coupled with an overrelaxation technique to solve the equations, is not very 
sensitive to the particular value of X used. Evidently, the correction successfully achieves 
our goal, i.e., the enforcement of Eq. (3), so that the solution is independent of X. 

For the three-dimensional case, we could proceed as before and derive the reflec- 
tion rule from Garabedian's integral equation, but we prefer to simply try to modify 
the two-dimensional rule in a suitable manner. We can get the proper factors of y 
into the resulting conditions, as h goes to zero, by using the formula 

2 
-3 

(47) _ 2 2 au Y ?Xhi(xx YUYV) 

Z+ zo + Z _ Z Z_ Z 
z 0-z 0 

Reasoning as before, we see that Eq. (28), its u-derivative, and Eq. (3) all follow from 

(47). 
We emphasize here that we have just arrived at a reflection rule by a heuristic 

reasoning process quite different from the procedure outlined in Part 1, or from the 

integral equation of Garabedian. We do not know the location of E (i.e., Eq. (8)), and 

we have not invoked the analyticity of the curve, yet we are able to use reflection to 

express the boundary conditions. This demonstrates the possibility of applying the 

method to a very general class of problems. 
We conclude that using the above approximate reflection rules (46) and (47) 

should insure the free boundary condition (28) and orthogonality (3) along BC. Clearly, 
using approximate rules requires more care than the exact formulation (8). First, we 

can only be sure of (3) if our solution is insensitive to the value of X; this must be 

tested. Second, we have no direct proof that z(w) will map boundary to boundary; our 

argument for this is based on the observation that the solution to the difference equa- 
tions seems to be unique, as indicated by the fact that the overrelaxed iterations of the 

solution do converge, while we would expect them to oscillate if there were more than 

one solution. Since our equations are certainly consistent, our solution must be the 

right one. Third, we still have the problem, inherent in any reflection scheme using 

four-point normalization, that H = X2 + y2 _ X2 _ y2 need not be zero; this will be 

taken care of in section G. 
F. The Separation Point. Some additional thought must be given to the separa- 

tion point B, in order to preserve the second-order accuracy criteria employed in Eqs. 

(46) and (47). 
First of all, the expansion of 4(z) near iY0 occurs in powers of (z - iY0)'/2 (cf. 

[4] ). This results in lower accuracy for the Laplace difference equation (5) in the 

z-plane. However, we have already corrected this by our choice of geometry; z(w) maps 
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the 900 corner at B to the 1800 separation point iYo, so z expands in power of 
(w - i)2, and the accuracy of the finite-difference equation for 4 is restored to 0(h2) 
in the w-plane. 

A more troublesome inaccuracy arises from the reflection rule (46) or (47). Sincc 
I' 1 on AB and z(w) has a branch point at B, both ',, and z - are 0(h) and one 

of the terms becomes 0/0 at B. The rule (30) for reflecting through the wall is exact; 
we must repair (46) and (47). The geometry near B is shown in Fig. 4, where image 

points are identified by their subscripts. As h O 0, the pairs of points z1 and Z2 Z4 
and z5, and Z6 and z7 coalesce because of the branch point. 

v 

W2 oW4 

(B) W6 W8 w 

WS * WW 3 

y 

Z2 
Z. 

*Z3 z0 Z4 ZS 

Z7* 1z6 
Z. \ 

Z7 

Z8 

FIGURE 4 

For the two-dimensional case, we return to the integral formula (41); using the 

notation of Fig. 4, we write it as 
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(48) Z2 - Zo f = (')2d 2 0 Zo0 

As we indicated above, ? has an expansion in powers of (z - zo)/2. More explicitly, 

(49) ? = PO + AJ(z - Zo)1"2 + A2(Z - z0) + A3(Z ZO)3/2 + 

where A1 is zero (cf. [5]). This gives ?'(z) = ?'(zo) +0(Iz - zo112) so we can write 

(50) Z2 - = t02(Z1 - ZO) +(Z1 - Z 

Since z0 is the separation point, z' = 0. Thus, z1 - z0 is O(h2) and the error 
here is O(h3), while the left-hand side is O(h2). Also, we have 

(51) t= d(4 + i ')/dz = ?x + i x; 

but analyticity requires Ox = y = 0 on AB, so tO= i x and the integral representa- 
tion yields 

(52) - Z= - (Z1 - Zo)42 + o(h3). 

In order to use this as a reflection rule, we must find a sufficiently accurate 
approximation for Px at z0. We expand 4 around z0 to get (X3, y3) = 4'3; namely, 

(53) 43 = 4O + 4x(X3 - Xo) + iy(y3 -YO) +?( z3 - ZO 13/2) 

(see Fig. 4). Using the above estimates, we derive 

(54) Qx = (Q3 - /0)/(X3 - Xo) +O(h). 

Therefore, we take for our reflection law at the corner B, 

2= O + (ZO -zi) 

accurate to order O(h3). 
We must now examine the consequences of this rule. As h 0, it becomes 

(56) z = Zv 2- 

From this we conclude that either 

(57) Im z = 0 and 42 = 1, 

or 

(58) zv =0. 

But x-0 on AB, soXV =0 , and either conclusion leads to (58). 
With this in mind we look at the higher order limits and get 

v = -zvv z -2 

Again we are led to alternatives; if zvv is zero, we take still higher order terms until we 
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get a nonzero derivative zvv...v, at which point we finally conclude 

(59) 42 = 1. 

Thus, we see that the consequences of (55) are (58) and (59). Clearly, (58) is 
consistent; and since 4x is the normal derivative of 4 in the z-plane at the separation 
point, the second equation agrees with (23). 

For the axially symmetric case we modify (55) to become 

(60) Z = Z0 Z0 )( 3 ?)?I 

Analogous calculations show that this is consistent with (58) and (23), also. 
G. The Line of Truncation. The values of x, y, and 4 on the line CD will ap- 

proach their asymptotic limits as the length of the rectangle, AD, is increased. So as 
an approximation we set 

(61) y = v, x =x = constant, and 4 = vm+1/(m ? 1) 

on CD. (Later we shall extrapolate our results for the length AD going to infinity.) 
The choice of the number x1 is determined by the following considerations. 

Recall that no provision has yet been made for driving H= X2 +y2 ? X2 

2 to zero. Since x1 is the only undetermined parameter in the problem, we use it to 
enforce this condition. Experimentation on several models has indicated that the so- 
lution to the difference equations is unique for any fixed x1, so H can be regarded as 
a function of xi. We, therefore, use a proportional-gain procedure. While we are 
iteratively solving the equations, we compute H, and then shift x1 by an amount 

(62) bxi =piH. 

Heuristic arguments (cf. [9] ) indicate that the constant ,u should be positive, and ap- 
proximately equal to 2. 

To actually implement this procedure we use the following scheme, which is 
designed to enhance the stability. The value of H is computed by centered differences 
at all points in the rectangle ABCD to the right of u = 1 (thus excluding the pole) 
and the average is formed. Then x1 is shifted according to (62). In addition, the 
x-coordinates of all the mesh points involved in this average are shifted by a propor- 
tional amount. This operation is not performed after every iteration of the equations, 
but rather, we wait an appropriate number of iterations after shifting x1 for the 
effect to settle. 

Experimentation shows that this scheme does drive H to zero. The optimal 
number of iterations between shifts seems to be the same as the number of mesh 
points along the x-axis, and the best value of ,u is 

(63) su= 2.8. 

H. The Residue at the Origin. The residue R of z(w) at w = 0, appearing in 
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Eq. (35), is determined by the condition of analyticity; we have already specified the 
images of three points of the rectangle, namely, A, B, and C (recall Y. = 1), so we 

have no freedom left to choose R. The velocity-averaging method described in [4] for 

overcoming the difficulty seems to this author to be somewhat obscure, so we invented 
an altogether different, if not better motivated, technique. 

Referring to Fig. 3, the reader may expect that if the residue were too big, the 
flow region would be to some extent "sucked out" to infinity in the second quadrant, 
drawing the free surface (which is the only part of the boundary not "rigidly" fixed) 
down and in; while the opposite would happen if R were too small. The result would 
be a nonzero angle of separation at z = iYo. Numerical experiments have completely 
confirmed this heuristic guess; the equations were solved for different fixed values of 
R, and it was found that the angle of detachment was a monotonic function of the 
parameter R. 

This suggests another proportional-gain computation like that in section G; at the 
same time we are correcting the value of xi by Eq. (62), we adjust R by an amount 
proportional to the angle formed at detachment. The most successful scheme appears 
to be the following. 

Let us examine the expansion of z(w) along BC, near the point B (where w = i). 

ax a2 u2 a3X u3 
+OU) 

(64) ( ) 
B au B au2 B 2 3 B 3! 

Y(u + Y + a u + U ? 0 (u 3). ) aU B au2 B 2 

For the exact solution, XB = 0 and both first derivatives vanish (since B is a 
branch point). Furthermore, x is identically zero on AB so xvv = 0, and harmonicity 
implies 

(65) 
a2 

B=? 
au2 

also. Thus, 

(66) x =-O(u3) and y = YO + 0(U2), 

which displays the smooth detachment property explicitly. 
Now in our approximate difference scheme, XB is made zero by the reflection 

law on AB. xuu is driven to zero by equating it, through Eq. (5), with x ,, which is 
forced to zero by the same reflection law. There is no such explicit mechanism for the 
term xu. We shall, therefore, use the computed value of xU as a measure of the angle 
of detachment. This value will be calculated from the approximate formula (see Fig. 4) 

(67) xAI = (3X6 -2 X8 + X9)h + O(h3), 

which is exact for cubic polynomials, and thus is most appropriate because of (66). 
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Therefore, every time we change xl according to (62), we also adjust R by the 
amount 

(68) 8 R = 71xu IB. 

The constant rq is chosen experimentally to achieve optimal convergence for the (over- 
relaxed) iterates of the equations, but the final solution must be insensitive to changes 
in rt if we are to conclude xU = 0. The value r- = 30 seems to work best in this model. 

I. Initialization and Iteration. The initial values for x, y, and 4 are chosen to be 
the exact solutions for the two-dimensional case. These can be found by the hodograph 
technique, and are given by 

I= 2 

(69)2 
z = 2i - ? {t + e- ? (1 + e 2)/2 -log(l - (1 + 

e2-)Y2)}, 

where 

= sin(flw/2). 

Care must be exercised in the choice of quadrant for the square root. 
With these starting values, the system of equations can be solved iteratively using 

the overrelaxation technique. The results of computer runs are given in Part 3. We 
summarize by presenting an outline of the iterative procedure. 

A basic iteration begins with stored values of x, y and 4. First the reflected 
values of x and y are computed according to (30) on AB, (31) on AD, (46) or (47) on 
BC, and (55) or (60) at the corner B. The values on CD are retained as per Eq. (61), 
and the values of 4 on the other three sides are fixed in accordance with the normali- 
zations (21) and (22). 

Next we update the interior values of x and y by successive overrelaxation. If 
we denote the right-hand side of Eq. (5) by x', the update proceeds according to the 
rule 

Xnew = Xold + c.(x' - XOld), 

where the relaxation factor co is computed by co = 2/(1 + oxh) (cf. [3]). Experimen- 
tation resulted in an optimal choice (in terms of speed of convergence) of of = 12. The 
values of y are updated similarly. The updates proceed successively, i.e. new values are 
used in (5) as they are computed, in a straightforward up-and-down left-to-right order. 
The largest residual lxnew - Xo Id that occurs is noted and used in determining con- 
vergence. 

Because the boundary conditions for 4 are so much less complicated, its iterates 
converge much faster than those of x and y. Consequently, 4 is only updated every 
ten iterations. The same procedure is followed, except that Eq. (29) is used for 4' in 
the axisymmetric case, and the optimal relaxation parameter appears to be a = 4. 

Of course, the transformations (32)435) must be observed near the corner A. 
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The computation indicated in Eq. (61) is performed once every N iterations, where 
N is the number of mesh points along AD. Similarly, the residue correction (68) is 
performed once every N iterations. 

Finally, once the convergence criterion is established (by testing the maximal 
residual, last shift in xl, and last residue correction), the parameters X, ,u and r1 are 
doubled and the iterations begin again, to test the insensitivity of the answers with re- 
spect to these "ad hoc" numbers. 

If more accuracy is desired, the mesh size is then halved, new values for x, y and 
4 are interpolated, and we start over. 

A crude comparison of the computational effort per iteration between the reflec- 
tion scheme and the steepest-descent method, based on the number of Fortran instruc- 
tions, indicates that they are about the same. Also, the amount of relaxation used is 
roughly equal. 

Part 3. Results. The procedure of Part 2 was programmed and run on New York 
University's CDC 6600 computer for many test cases. Here we describe the results 
with regard to accuracy and convergence. 

Throughout Part 3 we shall compare our results with those of Bloch [41, because 
a measure of the success of the reflection procedure is the degree to which it improves 
on the efficiency of the method of steepest descent. The superiority of the reflection 
technique is clearly demonstrated in section A by computer runs requiring about one- 
tenth the number of iterations needed for analogous cases employing steepest descent. 

A. Rate of Convergence of the Iterations. For the two-dimensional vena con- 
tracta model we choose a w-rectangle of dimension 4 1/ 3 by 1, with mesh size h = 
1/48. This involves 10,708 mesh points. The program was iterated until all residuals 
were less than 10-6. The number of cycles required was 588. For comparison, Bloch 
quotes a similar run with a 6 by 1 rectangle (14,161 mesh points); it required 6,260 
iterations to achieve the same accuracy. 

For the axially symmetric case the same rectangle was employed but the initiali- 
zation was slightly altered. We used the exact two-dimensional data with h = 1/6. 
After residuals were reduced to 10-5, the mesh was halved and the data interpolated 
for the new points. This was repeated, but for h = 1/48 the iterations proceeded until 
the residuals were less than 10-6. The number of iterations required was 

Number of Iterations Mesh Size 

257 1/6 

162 1/12 

851 1/24 

946 1/48 

We mention that as h was decreased, the amount of overrelaxation used was increased 
extremely rapidly. 

For comparison, Bloch quotes 13,368 iterations required to reduce residuals to 
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10-6 in this case with 10,633 mesh points. 
We conclude that the reflection scheme requires about one-tenth as many itera- 

tions as steepest descent for the same degree of convergence. 
B. Accuracy. All the approximate equations employed in this program are accu- 

rate to second order (that is, the order of the truncated terms exceeds the order of the 

rest of the equation by 2), so we may expect that if centered differences are used the 

solutions ought to converge like 0(h2) as h -, 0. This was confirmed by the experi- 
ments; the values computed for the contraction coefficients (25) using the 4 1/3 by 1 
rectangle described above, for different mesh sizes, are excellently approximated by 

CC(h) = .61005 - .21 h2 (m = 0), 

CC(h) = .59133 + .70 h2 (m = 1). 

Of course, these extrapolated values must still be corrected for the finite length of the 
rectangle (see below). 

C. Dependence on Experimental Parameters; The Contraction Coefficients. Ther 
are four parameters in our vena contracta model which are chosen experimentally to 
achieve certain goals. They are: 

X (Eqs. (46) and (47)), 

u (Eq. (62)), 

71 (Eq. (68)), and 

UM ax' the length of the rectangle ABCD. 

The values for the first three are chosen to speed convergence, but because they 
come from proportional-gain errors, the final solutions must be insensitive to them. W( 

tested this by doubling their values after all residuals were less than 10-6; the resulting 
perturbation needed only at most 10o additional iterations to reproduce this conver- 

gence criteria, and the contraction coefficients were changed by no more than one unit 

in the fourth decimal place. Evidently their utilizations were successful. Bloch [4] 
has argued that the effect of truncating the rectangle is to change the contraction coef- 

ficient according to 

CC (UM ax) = Cc -A C- Umax, 

where A and X are constants. Our observations fit this formula, with the values 

m=0 m= 1 

A .7 1.2 

X 1.5 2.2 

Extrapolating our data for all these corrections, we are led to the following esti- 
mates of the contraction coefficients: 

Cc=.61106, m = 0 and Cc = .59142, m=1, 

where at least the fourth decimal is significant. 
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For comparison, Bloch [4] quotes 

Cc(O) = .61 100 ? .00002, c(1) = .59135 ? .00004, 

and our computations confirm these values. The exact value for m = 0, is, from (68), 

Cc(0) = fr/(ir + 2) = .61 1015 .... 
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